(1)

RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2017

Paper : III [Gr-B]

SECOND YEAR [BATCH 2016-19]

CHEMISTRY [Honours]

Date : 14/12/2017 Time : 11 am - 1 pm

(i)

(ii)

C

[Use one Answer Book for Unit I and another Answer Book for Unit II, III & IV]

(Attempt one question from each Unit)

Unit I [10 marks]

- a) When treated with Br_2-H_2O , phenol gives 2,4,6-tribromophenol, however, when treated with 1. Br₂–CS₂, it gives 2- and 4-bromo phenol – Justify. [2]
 - Identify the products of the following reactions and explain their formation: [2+2] b)
 - (i) $2, 4, 6 trinitroanisole \xrightarrow{EtOK/EtOH} \rightarrow$
 - (ii) $2,6-dideuterobromobenzene \xrightarrow{KNH_2/NH_3}$

Me₃CCOCI

NaOMe

MeOH

Predict the course of the following reactions with appropriate mechanism: c) [2+2]

- For the synthesis of salicylic acid, Kolbe-Schmidt reaction of sodium phenolate is useful and 2. a) not potassium phenolate. Explain.
 - Carry out the following conversions: aniline to 2,6-dichloroaniline b)
 - Predict the products for the following reactions with proper explanation: c)

NO₂

 NO_{2}

Carryout the following conversion with mechanism. d)

[2]

[2]

[2]

[2]

Full Marks: 35

e) Rationalise the following reaction with plausible mechanism.

<u>Unit II</u>

3. a) Illustrate with suitable example the phenomenon of 'symbiosis'.
b) A solution containing 0.319 g of a coordination compound of molecular formula CrCl₃.6H₂O was passed through a cation exchange resin in acidic form and the acid so liberated was neutralised with 19ml of 0.125(N) NaOH. Identify the compound. (Molecular weight of CrCl₃.6H₂O = 266.5)

- c) 20ml of a weak acid HX of strength 0.02 N is titrated with 20ml of a strong base YOH of strength 0.02N. Calculate the pH when (i) 19.9 ml of YOH is added and (ii) at the equivalent point. (Given : pK_{HX} = 4.7). Also draw the respective titration curves (qualitative). [2]
- d) Write the IUPAC name of the complex : $[Co(NH_3)_6][Co(NO_2)_6]$.
- e) Complexes of acetone are less stable than those of acetylacetone —Justify or contradict.
- 4. a) Trisilybamine and trimethyl amine differ completely in their reactions with HCl —explain giving equations.
 - b) Arrange the following complexes with explanation in order of their molar conductance values in aqueous solution. $Pt(NH_3)_6Cl_4$, $Pt(NH_3)_3Cl_4$, K_2PtCl_6 , $Co(NH_3)_5(NO_2)Cl_2$, $Co(NH_3)_3(NO_2)_3$.
 - c) Careful addition of NH_4I to the solution of Zn^{2+} in excess KNH_2 solution produces white precipitate which dissolves if excess NH_4I is added. Explain the observation with reaction. [2]
 - d) Mention one application of chelate complex in each of the qualitative and quantitative inorganic analysis.
 [2]
 - e) Give the corresponding conjugate acids and bases of the species : NH_4^+ , HS^- , HCO_3^- , H_2O . [

<u>Unit III</u>

- 5. a) Explain Cu^{+2} ion readily liberates I_2 from $I^{(-)}(aq)$ but in presence of ethylene diamine (en) it does not.
 - b) Complete and balance by ion-electron method : $NaNO_3 + NaOH + Al \rightarrow$. [2]
 - c) Establish Nernst equations for the following redox couples : (i) $\operatorname{Cr}_2 \operatorname{O}_7^{2-} / \operatorname{Cr}^{3+}$ in acid medium (ii) $\operatorname{BrO}_3^- / \operatorname{Br}^-$ in alkaline medium.
 - d) Reinhardt solution is used in the titration of Fe^{2+} with KMnO₄ solution in HCl medium —Explain. [2]

6. a) Indicate the directions in which the following reactions proceed spontaneously and assign them with scientifically appropriate names : (i) $Cu^+ + Cu^+ \square - Cu^{+2} + Cu^0$; (ii) $Ag^+ + Ag^+ \square - Ag^{+2} + Ag^0$.

Given:
$$E_{Cu^{+2}/Cu^{+}}^{o} = +0.16v$$
; $E_{Cu^{+}/Cu}^{o} = +0.52v$; $E_{Ag^{+2}/Ag^{+}}^{o} = +1.98v$; $E_{Ag^{+}/Ag}^{o} = +0.80v$. [3]

[2]

[8 marks]

[9 marks]

[2]

[2]

[1] [2]

[2]

[2]

[1]

[2]

[2]

From the following Latimer diagram draw the corresponding Frost diagram for the manganese redox system in acid medium (E^0 value in volt). $MnO_4^- \xrightarrow{0.56} MnO_4^{2-} \xrightarrow{2.26} MnO_2 \xrightarrow{0.95} Mn^{3+} \xrightarrow{1.5} Mn^{2+} \xrightarrow{-1.18} Mn$ [3b)

[3+1+1]

Then answer the following question :

- i) From redox perspective, which is the most thermodynamically stable species?
- Which species would potentially disproportionate? ii)

7.	a)	Rationalise the following facts in the light of molecular orbital concept :	
		i) Bond dissociation energy of NO is less than that of N_2 .	[2]
		ii) B_2 but not C_2 is paramagnetic.	[2]
	b)	Assuming x-axis as the bonding axis, predict how many π -MOs would be formed by d-orbitals of two combing atoms. Give the overlap diagram in each case.	[2]
	c)	Between H ₂ SO ₄ and H ₃ PO ₄ which one is more viscous and why?	[2]
8.	a)	Differentiate between : $2c - 2e$ and $3c - 2e$ bonds with examples.	[2]
	b)	The conductivity of Ge is enhanced many folds when trace amount of As is added to itExplain.	[2]
	c)	Construct the M.O. diagram of CN ⁻ ion and hence comment on its pi-acidity.	[3]
	d)	Although HF is a monoprotic acid still it forms bi-salts. —Explain.	[1]

– × ——